Himpunan


NOTASI HIMPUNAN

Nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara elemen himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu.

JENIS-JENIS HIMPUNAN

  • Himpunan berhingga adalah suatu himpunan yang jumlah anggotanya dapat dihitung. Contohnya D = {bilangan genap kurang dari 10} atau A = {2,4,6,8}. Himpunan D jumlah angotanya dapat dihitung yaitu sebanyak 4 buah.
  • Himpunan tak hingga adalah suatu himpunan yang jumlah anggotanya tidak terbatas atau tak hingga. Contohnya: A= {bilangan genap}, B= {bilangan ganjil}
  • Himpunan kosong adalah suatu himpunan yang tidak memiliki anggota sama sekali. Himpunan kosong dilambangkan dengan tanda {}. Contohnya B = {bilangan genap antara 2 dan 4}. ditulis B={}={0}.Himpunan {apel, jeruk, mangga, pisang} memiliki anggota-anggota apel, jeruk, mangga, dan pisang. Himpunan lain, semisal {5, 6} memiliki dua anggota, yaitu bilangan 5 dan 6. Himpunan yang tidak memiliki anggota apa pun. Himpunan kosong tidak memiliki anggota apa pun, ditulis sebagai:          bf499c83c4f731bee247bd56c09dcfc2
  • Himpunan equal/himpunan sama adalah himpunan yang anggotanya sama
    contohnya A= {b,c,d}
    B={d,c,b}
    A=B
  • Himpunan ekuivalen adalah himpunan-himpunan yang jumlah anggotanya sama.
    Contohnya A= {b,c,d}
    B={d,c,b}
    A jumlahnya sama dengan B
  • Himpunan semesta adalah himpunan dari semua unsur yang sedang dibicarakan. Himpunan semesta juga disebut himpunan uiversal dan ditulis dengan huruf S.
    contohnya:
    A = {1,3,5,7,9}
    himpunan semestanya berupa:
    S = {bilangan asli}
    S = {bilangan cacah}
    S = {bilangan ganjil kurang dari 10}
  • Himpunan bagian adalah apabila setiap unsur dalam himpunan B termasuk juga anggota A, maka B merupakan bagian dari himpunan A.
    contohnya
    B = {a,c,e}
    A = {a,b,c,d,e}
    jadi B bagian dari A.
  • Anggota himpunan n adalah suatu unsur dari suatu himpunan.
    Contohnya
    A = (a,b,c,d,e}
    maka a elemen A
  • Himpunan lepas adalah ssuatu himpunan yang tidak mempunyai anggota persekutuan dengan himpunan lain.
    Contohnya
    A = {d,e,f}
    B = {g,h,i}
    maka himpunan A tidak mempunyai anggota persekutuan dengan himpunan B atau A//B
  • bukan anggota himpunan adalah unsur ini tidak termasuk dalam himpunan tersebut
    contohnya
    A = {a,b,c,d}
    e bukan anggota himpunan A.
  • Himpunan biolangan cacah adalah himpunan bilangan yang anggotanya dimulai dari nol dan seterusnya
    contoh
    K = {0,1,2,3,4,5}
  • Himpunan bilangan asli adalah himpunan bilangan yang anggotanya dimulai dari bilangan satu dan seterusnya.
    Contohnya
    D = {1,2,3,4,}
  • himpunan bilangan genap adalah himpunan yang anggotanya dimulai dari angka dua dan selalu genap atau habis dibagi dua
    contohnya
    G = {2,4,6,8,10}
  • himpunan bilangan ganjil adalah himpunan yang anggota bilanganya tidak habis dibagi dua
    contohnya
    K = {1,3,5,7}
  • himpunan blangan prima adalah himpunan bilangan yang anggotanya semua bilangan yang memiliki dua faktor
    contohnya
    Y = {2,3,,5,7}
  • himpunan kuadrat bilangan cacah adalah himpunan bilangan cacah yang anggotanya dipangkatkan dua.
    Contohnya
    Y = {0^2,1^2,3^2)

RELASI HIMPUNAN

Subhimpunan

Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang elemen-elemennya adalah diambil dari himpunan tersebut.

  • {apel, jeruk}
  • {jeruk, pisang}
  • {apel, mangga, pisang}

Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai subhimpunan atau himpunan bagian dari A. Jadi dapat dirumuskan:

B adalah himpunan bagian dari A jika setiap elemen B juga terdapat dalam A.

 B \subseteq A \equiv \forall_x \, x \in B \rightarrow x \in A

Kalimat di atas tetap benar untuk B himpunan kosong. Maka \varnothing juga subhimpunan dari A.

Untuk sembarang himpunan A,

\varnothing \subseteq A

Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.

Untuk sembarang himpunan A,

A \subseteq A

Istilah subhimpunan dari A biasanya berarti mencakup A sebagai subhimpunannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.

Subhimpunan sejati dari A menunjuk pada subhimpunan dari A, tetapi tidak mencakup A sendiri.

B \subset A \equiv B \subseteq A \wedge B \neq A

Superhimpunan

Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.

A \supseteq B \equiv B \subseteq A

Kesamaan dua himpunan

Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.

A = B \equiv \forall_x\; x \in A \leftrightarrow x \in B

atau

A = B \equiv A \subseteq B \wedge B \subseteq A

Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.

Himpunan Kuasa

Himpunan kuasa atau himpunan pangkat (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah \mathcal{P}(A).

Jika A = {apel, jeruk, mangga, pisang}, maka \mathcal{P}(A):

 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }

Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.

|\mathcal{P}(A)| = 2^{|A|}

Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan A = \{ \{a,\,b\},\, \{c,\,d,\,e,\,f\},\,\{a,\,c\},\,\{,\}\} adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya, \mathcal{P}(A) adalah sebuah keluarga himpunan.

Contoh berikut, P = \{ \{a,\,b\}, c\} bukanlah sebuah kelas, karena mengandung elemen c yang bukan himpunan.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s